EXACT SOLUTION OF THE MASS TRANSFER EQUATIONS OF GEL FILTRATION CHROMATOGRAPHY BY MEANS OF A FORMAL INVERSION OF THE LAPLACE TRANSFORM, AND THE DERIVATION OF AN EQUATION FOR THE TIME SPENT BY A MOLECULE IN THE GEL PHASE

G. MARIUS CLORE
Department of Biochemistry, University College London, Gower Street, London WCIE 6BT (Great Britain)
and
E. PETER SHEPHARD
The Medical Professorial Unit, St. Bartholomew's Hospital, West Smithfield, London EC1A $7 B E$ (Great Britain)

(First received May 12th, 1977; revised manuscript received August 22nd, 1977)

Abstract

SUMMARY The exact solution of the equations of mass transfer in a gel filtration chromatography column, subject to realistic boundary values and initial conditions, is obtained by means of a formal inversion of the Laplace transform. The time spent by a molecule in the gel phase is also calculated.

INTRODUCTION

The equations describing mass transfer in a gel filtration chromatography column are well known. Their exact solution with realistic boundary values and initial conditions has proved refractory. Use has been made of compartmental analysis ${ }^{1-4}$, the Mellin transform ${ }^{5}$, the Laplace transform ${ }^{6}$, and the numerical Laplace transform ${ }^{7}$. In this paper we obtain the exact solution of the mass transfer equations, subject to realistic boundary values and initial conditions, by means of a formal inversion of the Laplace transform, and we derive an equation for the time spent by a molecule in the gel phase. This latter equation enables one to design an experiment whereby the time spent by a molecule both in the gel phase and in the mobile phase can be obtained from a single experiment.

THEORY

We define the following quantities: let $1 / T_{1}$ be the probability, per unit time, that a molecule of the object species passes from the solution to the gel; $1 / T_{2}$ the probability, per unit time, for the reverse process; C_{1} the concentration of the object species in the solution; C_{2} the concentration of the object species in the gel;
G the ratio of the gel volume to that of the solution; V the linear velocity of the mobile phase; K the total amount of the object species supplied; and τ the width (in time) of the input pulse. Other quantities will be defined as they arise. Then the rate of transfer of the object species to the gel is C_{1} / T_{1}, the rate of the reverse process (per unit volume of solution) is $G C_{2} / T_{2}$, and so the equations of mass transfer per unit volume of solution, neglecting longitudinal diffusion in the mobile phase, are:

$$
\begin{align*}
& \frac{\partial C_{1}}{\partial t}=\frac{G C_{2}}{T_{2}}-\frac{C_{1}}{T_{1}}-V \frac{\partial C_{1}}{\partial x} \tag{1}\\
& G \frac{\partial C_{2}}{\partial t}=\frac{C_{1}}{T_{1}}-\frac{G C_{2}}{T_{2}} \tag{2}
\end{align*}
$$

These have to be solved subject to the following boundary conditions:

$$
\begin{align*}
& C_{1}(0, x)=0=C_{2}(0, x) \quad(x>0) \tag{3}\\
& C_{1}(t, 0)= \begin{cases}K / \tau V & (0<t<\tau) \\
0 & (t \geqslant \tau)\end{cases} \tag{4}\\
& C_{2}(t, 0)=0 \quad(t \geqslant 0) \tag{5}
\end{align*}
$$

Let $T_{1}(s, x)$ and $T_{2}(s, x)$ be the Laplace transforms of C_{1} and C_{2}, respectively. Then

$$
\begin{align*}
& V \frac{\partial T_{1}}{\partial x}+\left(\frac{1}{T_{1}}+s\right) \Gamma_{1}-\frac{G T_{2}}{T_{2}}=0 \tag{6}\\
& G\left(\frac{1}{T_{2}}+s\right) T_{2}-\frac{1}{T_{1}} T_{1}=0 \tag{7}\\
& T_{1}(s, 0)=\frac{K}{s \tau V}[1-\exp (-s \tau)] \tag{8}
\end{align*}
$$

Eliminating Γ_{2} we find

$$
\begin{equation*}
V \frac{\partial T_{1}}{\partial x}+P(s) T_{1}=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
P(s)=\frac{1}{T_{1}}+s-\frac{1 / T_{1}}{1+T_{2} s}=s\left[1+\frac{T_{2}}{T_{1}}\left(1+T_{2} s\right)^{-1}\right] \tag{10}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
T_{1}(s, x)=\frac{K}{s \tau V}[1-\exp (-s \tau)] \exp \left(-\frac{x P(s)}{V}\right) \tag{11}
\end{equation*}
$$

Combining eqns. 10 and 11 we have

$$
\begin{equation*}
T_{1}(s, x)=\frac{K}{s \tau V}[1-\exp (-s \tau)] \exp \left(-\frac{x s}{V}-\frac{\gamma x}{V T_{2}} \frac{T_{2} s}{1+T_{2} s}\right) \tag{12}
\end{equation*}
$$

where $\gamma=T_{2} / T_{1}$.

We introduce the following non-dimensional parameters ($L=$ length of column):

$$
\begin{array}{ll}
\alpha=L / V T_{2} & \varepsilon=\tau / T_{2} \\
\beta=\gamma L / V T_{2} & z=1+T_{2} s \tag{13}\\
u=t / T_{2} &
\end{array}
$$

and we find from eqn. 12 and the inversion theorem (which is valid at times $t>$ $[\tau+x(1+\gamma) / V]$ since then the coefficients of s in the exponents of the integral tend to real positive numbers as $|s| \rightarrow \infty$) that, for $c>0$

$$
\begin{align*}
C_{1}(t, L)= & \frac{K}{\tau V} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\mathrm{~d} s}{s}\left\{\exp \left[s\left(t-\frac{x}{\varepsilon}\right)\right]-\right. \\
& \left.\quad-\exp \left[s\left(t-\tau-\frac{x}{\varepsilon}\right)\right]\right\} \exp \left(-\frac{\beta s T_{2}}{1+s T_{2}}\right) \\
= & \frac{K}{\tau V} \frac{1}{2 \pi i} \int_{d-i \infty}^{a+i \infty} \frac{\mathrm{~d} z}{z-1}\{\exp [(u-\alpha)(z-1)]- \\
& \quad-\exp \{(u-\varepsilon-\alpha)(z-1)]\} \exp \left(\frac{-\beta(z-1)}{z}\right) \tag{14}
\end{align*}
$$

Defining $q(u, \beta)$ to be the function whose Laplace transform (using u, z instead of $t, s)$ is

$$
\begin{equation*}
q_{1}(z, \beta)=\frac{1}{z-1} \exp \left[\frac{-\beta(z-1)}{z}\right] \tag{15}
\end{equation*}
$$

we see that
$C_{1}(t, L)=\frac{K}{\tau V}[\exp (\alpha-u) q(u-\alpha, \beta)-\exp (\alpha+\varepsilon-u) q(u-\varepsilon-\alpha, \beta)]$
We find $q(u, \beta)$ as follows:

$$
\begin{equation*}
\frac{\partial}{\partial \beta} q_{1}(z, \beta)=-\exp (-\beta) \frac{1}{z} \exp (\beta / z) \tag{17}
\end{equation*}
$$

By Abramowitz and Stegun (29.3.81) ${ }^{8}$, this is the transform of

$$
\begin{align*}
\frac{\partial}{\partial \beta} q(u, \beta) & =-\exp (-\beta) \ell_{0}(2 \sqrt{ } \bar{\beta} \bar{u}) & & (u>0) \tag{18}\\
& =0 & & (u<0)
\end{align*}
$$

Moreover, for $\beta=0$ we have

$$
\begin{equation*}
q_{1}(z, 0)=\frac{1}{z-1} \tag{19}
\end{equation*}
$$

giving

$$
\begin{equation*}
q(u, 0)=\exp (u) \quad(u>0 ; 0, u<0) \tag{20}
\end{equation*}
$$

It follows that

$$
\begin{array}{rlr}
q(u, \beta)=\exp (u)-\int_{0}^{\beta} \exp (-\lambda) I_{0}(2 \sqrt{\lambda u c} \mathrm{~d} \lambda & (u>0) \tag{21}\\
& =0 &
\end{array}
$$

Let us consider the fixed value L of x, and for $k=0,1,2, \ldots$ let us define the k th moment (M_{k})

$$
\begin{equation*}
M_{k}=V \int_{0}^{\infty} C_{1}(t, L) t^{k} \mathrm{~d} t \quad(k=0,1,2 \ldots) \tag{22}
\end{equation*}
$$

which by eqn. 16 is given by
$M_{k}=\frac{K T_{2}^{k+1}}{\tau}\left\{\int_{\alpha}^{\alpha+\varepsilon} u^{k} \mathrm{~d} u-\int_{a}^{\infty} u u^{k} \exp (\alpha-u) \mathrm{d} u \int_{0}^{\beta} \exp (-\lambda) I_{0}\left\{2[\lambda(u-\alpha)]^{\ddagger}\right\} \mathrm{d} \lambda+-\right.$
$\left.+\int_{a+\varepsilon}^{\infty} u u^{k} \exp (\alpha+\varepsilon-u) \mathrm{d} u \int_{0}^{\beta} \exp (-\lambda) I_{0}\left\{2[\lambda(u-\varepsilon-\alpha)]^{\ddagger}\right\} \mathrm{d} \lambda\right\}$
$=\frac{K T_{2}^{k+1}}{\tau}\left\{\frac{(\alpha+\varepsilon)^{k+1}-\alpha^{k}}{k+1}+\right.$
$\left.+\int_{0}^{\beta} \exp (-\lambda) \mathrm{d} \lambda \int_{0}^{\infty} \exp (-\omega) I_{0}(2 \sqrt{ } \lambda \bar{\omega})\left[(\omega+\alpha+\varepsilon)^{k}-(\omega+\alpha)^{k}\right] \mathrm{d} \omega\right\}$
where we have taken $u=\omega+\alpha+\varepsilon$ in one integral, and $u=\omega+\alpha$ in another. For $k=0$ we introduce a parameter a and write

$$
\begin{aligned}
X(a, \lambda) & =\int_{0}^{\infty} \exp (-\omega a) I_{0}(2 \sqrt{ } \lambda \omega) \mathrm{d} \omega \\
& =2 \int_{0}^{\infty} \exp \left(-a y^{2}\right) I_{0}\left(2 \lambda^{ \pm} y\right) y \mathrm{~d} y \\
& =\left[\frac{-\exp \left(-a y^{2}\right)}{a} I_{0}\left(2 \lambda^{ \pm} y\right)\right]_{0}^{\infty}+\frac{2 \lambda^{ \pm}}{a} \int_{0}^{\infty} \exp \left(-a y^{2}\right) I_{1}\left(2 \lambda^{ \pm} y\right) \mathrm{d} y \\
& =\frac{1}{a}+\frac{2 \lambda^{ \pm}}{a} \frac{\pi^{\frac{1}{2}}}{2 a^{ \pm}} \exp \left(\frac{4 \lambda}{8 a}\right) I_{ \pm}\left(\frac{4 \lambda}{8 a}\right)
\end{aligned}
$$

by Abramowitz and Stegun (11.4.31) ${ }^{8}$; and

$$
\begin{equation*}
X(a, \lambda)=\frac{1}{a} \exp (\lambda / a) \tag{24}
\end{equation*}
$$

by Abramowitz and Stegun (10.2.13) ${ }^{8}$.

Now we note that

$$
\begin{equation*}
J_{k} \equiv \int_{0}^{\infty} \exp (-\omega) I_{0}(2 \sqrt{\lambda} \bar{\omega}) \omega^{k} \mathrm{~d} \omega=(-1)^{k}\left[\frac{\partial^{k}}{\partial a^{k}} X(a, \lambda)\right]_{a=1} \tag{25}
\end{equation*}
$$

so that, in particular

$$
\begin{align*}
& J_{0}=\exp (\lambda) \tag{26}\\
& J_{1}=(1+\lambda) \exp (\lambda) \tag{27}\\
& J_{2}=\left(2+4 \lambda+\lambda^{2}\right) \exp (\lambda) \tag{28}
\end{align*}
$$

Substituting these into eqn. 23 for the appropriate values of k we find

$$
\begin{align*}
& M_{0}=\frac{K T_{2}}{\tau}\left\{\varepsilon+\int_{0}^{\beta} \exp (-\lambda) \mathrm{d} \lambda[\exp (\lambda)-\exp (\lambda)]\right\}=K \tag{29}\\
& M_{1}=\frac{K T_{2}^{2}}{\tau}\left\{\left(\alpha+\frac{1}{2} \varepsilon\right) \varepsilon+\int_{0}^{\beta} \mathrm{d} \lambda[(1+\lambda+\alpha+\varepsilon)-(1+\lambda+\alpha)]\right\}
\end{align*}
$$

and using eqn. 13:

$$
\begin{equation*}
M_{1}=K\left[\frac{(1+\gamma) L}{V}+\frac{1}{2} \tau\right] \tag{30}
\end{equation*}
$$

whence the mean arrival time (\bar{t}) is

$$
\begin{equation*}
\bar{t}=M_{1} / M_{0}=\frac{(1+\gamma) L}{V}+\frac{1}{2} \tau \tag{31}
\end{equation*}
$$

Now, analagously to M_{k} for $k=0,1,2, \ldots$ we form M_{2}^{\dagger}, the second moment, but relative to \bar{i} :

$$
\begin{align*}
M_{2}^{i}= & V \int_{0}^{\infty}(t-i)^{2} C_{1}(t, L) \mathrm{d} t=M_{2}-M_{1}^{2} / M_{0} \\
= & K\left\{\frac{T_{2}}{\tau}\left(\alpha^{2}+\alpha \varepsilon+\frac{\varepsilon^{2}}{3}\right) \varepsilon+\right. \\
& +\int_{0}^{\beta} \mathrm{d} \lambda\left[\left(2+4 \lambda+\lambda^{2}+2(\alpha+\varepsilon)(1+\lambda)+(\alpha+\varepsilon)^{2}\right)-\right. \\
& \left.\left.-\left(2+4 \lambda+\lambda^{2}+2 \alpha(1+\lambda)+\alpha^{2}\right)\right]-\left[\frac{(1+\gamma) L}{V}+\frac{1}{2} \tau\right]\right\} \\
= & K\left\{T_{2}^{2}\left(\alpha+\beta+\frac{1}{2} \varepsilon\right)^{2}+T_{2}^{2}\left(\frac{\varepsilon^{2}}{12}+2 \beta\right)-T_{2}^{2}\left(\alpha+\beta+\frac{1}{2} \varepsilon\right)^{2}\right\} \\
= & K\left(\frac{\tau^{2}}{12}+\frac{2 \gamma L T_{2}}{V}\right) \tag{32}
\end{align*}
$$

Let us rewrite eqn. 14 as follows:
$C_{1}(t, x)=\frac{K}{\tau V} \frac{1}{2 \pi i} \int_{s-i \infty}^{f+i \infty} \frac{\mathrm{~d} s}{s}[1-\exp (-s \tau)] \exp \left[s t-\frac{x P(s)}{V}\right]$
where $P(s)$ is given by eqn. 10. Eqn. 33 is equivalent to

$$
\begin{equation*}
C_{1}(t, x)=\tau^{-1} \int_{0}^{\tau} C_{1}^{*}(t-u, x) \mathrm{d} u \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}^{*}(t, x)=\frac{K}{2 \pi i V} \int_{f-i \infty}^{f+i \infty} \exp \left\{s\left[t-\frac{x}{V}\left(1+\frac{\gamma}{1+s T_{2}}\right)\right]\right\} d s \tag{35}
\end{equation*}
$$

If we can neglect τ compared with the width (in time) of the output pulse, we use eqn. 35 at $x=L$ to estimate the half-width of that pulse. Let us change the variable to φ where

$$
\begin{equation*}
V t-L=\gamma L(1+\varphi)^{2} \tag{36}
\end{equation*}
$$

so that \bar{t} corresponds to $\varphi=0$. Then

$$
\begin{equation*}
V \mathrm{~d} t=2 \gamma L(1+\varphi) \mathrm{d} \varphi \tag{37}
\end{equation*}
$$

and

$$
\begin{gather*}
C_{1}(t, L) V \mathrm{~d} t= \\
=\frac{2 K \gamma L(1+\varphi) \mathrm{d} \varphi}{V T_{2}} \exp \left[-\beta\left(2+2 \varphi+\varphi^{2}\right)\right](1+\varphi)^{-1} \Gamma_{1}[2 \beta(1+\varphi)] \tag{38}
\end{gather*}
$$

Assuming β to be fairly large, we use the asymptotic formula [Abramowitz and Stegun (9.7.1) ${ }^{8}$]

$$
\begin{equation*}
I_{1}[2 \beta(1+\varphi)] \approx \frac{\exp [2 \beta(1+\varphi)]}{[4 \pi \beta(1+\varphi)]^{t}}\left(1-\frac{3}{16 \beta(1+\varphi)}+\ldots\right) \tag{39}
\end{equation*}
$$

whence for small φ

$$
\begin{equation*}
C_{1}^{*}(t, L) V \mathrm{~d} t \approx K \mathrm{~d} \varphi\left(\frac{\beta}{\pi(1+\varphi)}\right)^{ \pm} \exp \left(-\beta \varphi^{2}\right)\left(1-\frac{3}{16 \beta}+\ldots\right) \tag{40}
\end{equation*}
$$

This is a pulse of half-width

$$
\begin{equation*}
\Delta \varphi=2 \beta^{-\frac{1}{2}}(\ln 2)^{\frac{1}{2}} \tag{41}
\end{equation*}
$$

corresponding to

$$
\begin{equation*}
\Delta \mathrm{t}=\frac{2 \gamma L}{V} \Delta \varphi=3.33\left(\gamma L T_{2} / V\right)^{ \pm} \tag{42}
\end{equation*}
$$

using eqn. 13; or

$$
\begin{equation*}
\Delta x=V \mathrm{~d} t=3.33\left(\gamma L T_{2} V\right)^{ \pm} \tag{43}
\end{equation*}
$$

If it is possible to measure Δt or Δx (full width at half height) reasonably accurately, this gives T_{2}, since γ is known from \bar{t} (using eqn. 31), and T_{2} is then the only remaining unknown in eqns. 42 or 43 . Thus we have, using eqn. 42

$$
\begin{equation*}
T_{2}=\frac{V}{\gamma L} 0.09(\Delta t)^{2} \tag{44}
\end{equation*}
$$

We suggest the following procedure for estimating $A t$; ic will not be successful unless the output is collected in "buckets" of length h (in time), where h is considerably less than Δt (i.e. unless several consecutive "buckets", at least 4 and preferably 5 or 6 , are needed to contain say 90% of the total output; and unless τ is about as small (see Appendix 1)).

Let the output be collected in "buckets" of length h (in time), i.e. we measure for a range of values n

$$
\begin{equation*}
p_{n}=V \int_{I_{n}}^{z_{n}+h} C_{1}(t, L) \mathrm{d} t \tag{45}
\end{equation*}
$$

where p_{n} is the amount of the object species per unit area, $t_{n}=t_{0}+n h$, and t_{0} is chosen so that p_{0} is the largest of the p_{n}; thus we are interested in p_{n} for $n=0, \pm 1$, $\pm 2, \ldots, \pm N$ say, where N is moderate (or may even be large, giving increased accuracy, if h is small enough), and is defined by the range including virtually all the output (say 99%).

Then we have

$$
\begin{equation*}
M_{0}=\sum_{-N}^{N} p_{n} \tag{46}
\end{equation*}
$$

and, approximately

$$
\begin{equation*}
M_{1} \approx \sum_{-N}^{N}\left[t_{0}+\left(n+\frac{1}{2}\right) h\right] p_{n} \tag{47}
\end{equation*}
$$

whence

$$
\begin{equation*}
\bar{i}=M_{1} / M_{0} \approx t_{0}+\frac{1}{2} h+h\left(\sum_{-N}^{N} n p_{n}\right) /\left(\sum_{-N}^{N} p_{n}\right) \tag{48}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
M_{2} \dagger \approx \sum_{m=-N}^{N}\left[t_{0}+\left(m+\frac{1}{2}\right) h-\hat{t}\right]^{2} p_{m}=h^{2} \sum_{m=-N}^{N}(m-\vec{m})^{2} p_{m} \tag{49}
\end{equation*}
$$

(using m instead of n to avoid confusion) where

$$
\begin{equation*}
\bar{n}=\left(\sum_{-N}^{N} n p_{n}\right) /\left(\sum_{-N}^{N} p_{n}\right) \tag{50}
\end{equation*}
$$

(note: \bar{m} is not an integer). Thus, if we write for $k=0,1,2, \ldots$

$$
\begin{equation*}
Q_{k}=\sum_{-N}^{N} n^{k} p_{n} \tag{51}
\end{equation*}
$$

we have (since we can use m or n as the variable of summation)

$$
\begin{equation*}
M_{2}^{\dagger}-h^{2}\left(Q_{2}-2 \bar{m} Q_{1}+\bar{m}^{2} \underline{Q}_{0}\right)=h^{2}\left(Q_{2}-Q_{1}^{2} / Q_{0}\right) \tag{52}
\end{equation*}
$$

since $\bar{m}=Q_{1} / Q_{0}$. By choosing the origin t_{0} so that p_{0} is the largest of the p_{n}, we have made sure that Q_{1} / Q_{0} is not large and so eqn. 52 is well conditioned. Using eqns. 29 and 32 we have

$$
\begin{equation*}
\frac{M_{2}^{\dagger}}{M_{0}}=\left(\frac{\tau^{2}}{12}+\frac{2 \gamma L T_{2}}{V}\right) \tag{53}
\end{equation*}
$$

and using eqns. 46,51 and 52 we have

$$
\begin{equation*}
\frac{M_{2}}{M_{0}}=h^{2}\left[\frac{Q_{2}}{Q_{0}}-\left(\frac{Q_{1}}{Q_{0}}\right)^{2}\right] \tag{54}
\end{equation*}
$$

so that

$$
\left(\frac{\tau^{2}}{12}+\frac{2 \gamma L T_{2}}{V}\right)=h^{2}\left[\frac{Q_{2}}{Q_{0}}-\left(\frac{Q_{1}}{Q_{0}}\right)^{2}\right]
$$

By eqns. 48 and 55 we have

$$
\begin{equation*}
1+\gamma \approx \frac{V}{L}\left[t_{0}+\frac{1}{2}(h-\tau)+h \frac{Q_{1}}{Q_{\mathrm{o}}}\right] \tag{56}
\end{equation*}
$$

Combining eqns. 55 and 56 we have

$$
\begin{equation*}
T_{2}=\frac{V}{2 \gamma L}\left\{h^{2}\left[\frac{Q_{2}}{\underline{Q}_{0}}-\left(\frac{Q_{1}}{Q_{0}}\right)^{2}\right]-\frac{\tau^{2}}{12}\right\} \tag{57}
\end{equation*}
$$

ACKNOWLEDGEMENTS

We wish to acknowledge with thanks A. R. Curtis, T. E. Stacey and L. B. Strang for helpful discussions. One of us (G.M.C.) acknowledges a Carlo Campolin Scholarship. This work was supported by a grant from the Birth Defects Unit, University College Hospital Medical School, London.

APPENDIX 1

The expected error on Q_{2} / Q_{0} caused by a finite h is about $-1 / 12$. Decreasing h increases the mean value of n^{2} and so increases Q_{2} / Q_{0} relative to this fixed error. Alternatively, one can add $1 / 12$ to Q_{2} / Q_{0}, so that eqn. 57 becomes

$$
\begin{equation*}
T_{2}=\frac{V}{2 \gamma L}\left\{h^{2}\left[\frac{Q_{2}}{Q_{0}}+\frac{1}{12}-\left(\frac{Q_{1}}{Q_{0}}\right)^{2}\right]-\frac{\tau^{2}}{12}\right\} \tag{58}
\end{equation*}
$$

By keeping τ and h as small as practicable, this error is made small compared to Q_{2} / Q_{0}.

APPENDIX 2

A simple approach says that any given molecule spends $T_{2} /\left(T_{1}+T_{2}\right)$ of its time stationary in the gel phase, and $T_{1} /\left(T_{1}+T_{2}\right)$ of its time moving with velocity V. Its average velocity (μ) is therefore

$$
\begin{equation*}
\mu=\frac{V T_{1}}{T_{1}+T_{2}}=\frac{V}{1+\gamma} \tag{59}
\end{equation*}
$$

which is eqn. 31 in another guise. Moreover, it gets stuck on the gel $N=L / V T_{1}$ times during its passage on average, with standard deviation of the order of N^{\ddagger}, and each time suffers a delay T_{2}. The output pulse width is therefore of the order of $N^{\ddagger} T_{2}$, which is certainly consistent with eqn. 32 although our lengthy analysis is needed to get the exact expression.

APPENDIX 3

In this section we show how other similar models can be put into the form of eqns. 1 and 2 so that our theory can apply. Suppose we have

$$
\begin{align*}
& \frac{\partial C_{1}}{\partial t}=\eta C_{2}-\zeta C_{1}-V \frac{\partial C_{1}}{\partial x} \tag{60}\\
& \frac{\partial C_{2}}{\partial t}=\xi\left(\zeta C_{1}-\eta C_{2}\right) \tag{61}
\end{align*}
$$

This is the most general conservative form. We define:

$$
\begin{equation*}
G=\zeta^{-1} ; \quad T_{1}=\zeta^{-1} ; \quad T_{2}=(\xi \eta)^{-1} \tag{62}
\end{equation*}
$$

and divide eqn. 61 by ξ. Then we recover the form of eqns. 1 and 2 . Thus we have

$$
\begin{equation*}
\gamma=T_{2} / T_{1}=\zeta / \xi \eta ; \quad T_{2}=(\xi \eta)^{-1} \tag{63}
\end{equation*}
$$

so that the previous method allows us to find these two quantities, but not ξ and η separately.

REFERENCES

1 H. Vink, J. Chromatogr., 15 (1964) 488.
2 H. Vink, J. Chromatogr., 18 (1965) 25.
3 H. Vink, J. Chromatogr., 20 (1965) 305.
4 H. Vink, J. Chromatogr., 25 (1966) 71.
5 H. Yamazaki, J. Chromatogr., 27 (1967) 14.
6 E. Kučera, J. Chromatogr., 19 (1965) 237.
7 K. Yamaoka and T. Nakagawa, J. Chromatogr., 92 (1974) 213.
8 M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulae, Graphs and Mathematical Tables, Dover, New York, 1965.

